Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
PeerJ ; 12: e17222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650654

RESUMO

Targeting tumor angiogenesis is an important approach in advanced tumor therapy. Here we investigated the effect of the suppressor of variegation 3-9 homolog 1 (SUV39H1) on tumor angiogenesis in oral squamous cell carcinoma (OSCC). The GEPIA database was used to analyze the expression of SUV39H1 in various cancer tissues. The expression of SUV39H1 in OSCC was detected by immunohistochemistry, and the correlation between SUV39H1 and Notch1 and microvascular density (MVD) was analyzed. The effect of SUV39H1 inhibition on OSCC was investigated in vivo by chaetocin treatment. The migration and tube formation of vascular endothelial cells by conditioned culture-medium of different treatments of oral squamous cell cells were measured. The transcriptional level of SUV39H1 is elevated in various cancer tissues. The transcription level of SUV39H1 in head and neck squamous cell carcinoma was significantly higher than that in control. Immunohistochemistry result showed increased SUV39H1 expression in OSCC, which was significantly correlated with T staging. The expression of SUV39H1 was significantly correlated with Notch1 and CD31. In vivo experiment chaetocin treatment significantly inhibit the growth of tumor, and reduce SUV39H1, Notch1, CD31 expression. The decreased expression of SUV39H1 in OSCC cells lead to the decreased expression of Notch1 and VEGF proteins, as well as the decreased migration and tube formation ability of vascular endothelial cells. Inhibition of Notch1 further enhance this effect. Our results suggest inhibition of SUV39H1 may affect angiogenesis by regulating Notch1 expression. This study provides a foundation for SUV39H1 as a potential therapeutic target for OSCC.

2.
EMBO Mol Med ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570712

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with an overall 5-year survival rate of <12% due to the lack of effective treatments. Novel treatment strategies are urgently needed. Here, PKMYT1 is identified through genome-wide CRISPR screens as a non-mutant, genetic vulnerability of PDAC. Higher PKMYT1 expression levels indicate poor prognosis in PDAC patients. PKMYT1 ablation inhibits tumor growth and proliferation in vitro and in vivo by regulating cell cycle progression and inducing apoptosis. Moreover, pharmacological inhibition of PKMYT1 shows efficacy in multiple PDAC cell models and effectively induces tumor regression without overt toxicity in PDAC cell line-derived xenograft and in more clinically relevant patient-derived xenograft models. Mechanistically, in addition to its canonical function of phosphorylating CDK1, PKMYT1 functions as an oncogene to promote PDAC tumorigenesis by regulating PLK1 expression and phosphorylation. Finally, TP53 function and PRKDC activation are shown to modulate the sensitivity to PKMYT1 inhibition. These results define PKMYT1 dependency in PDAC and identify potential therapeutic strategies for clinical translation.

3.
Water Res ; 254: 121412, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38457944

RESUMO

Wetlands export large amounts of dissolved organic carbon (DOC) downstream, which is sensitive to water-table fluctuations (WTFs). While numerous studies have shown that WTFs may decrease wetland DOC via enhancing DOC biodegradation, an alternative pathway, i.e., retention of dissolved organic matter (DOM) by soil minerals, remains under-investigated. Here, we conducted a water-table manipulation experiment on intact soil columns collected from three wetlands with varying contents of reactive metals and clay to examine the potential retention of DOM by soil minerals during WTFs. Using batch sorption experiments and Fourier transform ion cyclotron resonance mass spectrometry, we showed that mineral (bentonite) sorption mainly retained lignin-, aromatic- and humic-like compounds (i.e., adsorbable compounds), in contrast to the preferential removal of protein- and carbohydrate-like compounds during biodegradation. Seven cycles of WTFs significantly decreased the intensity of adsorbable compounds in DOM (by 50 ± 21% based on fluorescence spectroscopy) and DOC adsorbability (by 2-20% and 1.9-12.7 mg L-1 based on batch sorption experiment), to a comparable extent compared with biodegradable compounds (by 11-32% and 1.6-15.2 mg L-1). Furthermore, oxidation of soil ferrous iron [Fe(II)] exerted a major control on the magnitude of potential DOM retention by minerals, while WTFs increased mineral-bound lignin phenols in the Zoige soil with the highest content of lignin phenols and Fe(II). Collectively, these results suggest that DOM retention by minerals likely played an important role in DOC decrease during WTFs, especially in soils with high contents of oxidizable Fe. Our findings support the 'iron gate' mechanism of soil carbon protection by newly-formed Fe (hydr)oxides during water-table decline, and highlight an underappreciated process (mineral-DOM interaction) leading to contrasting fate (i.e., preservation) of DOC in wetlands compared to biodegradation. Mineral retention of wetland DOC hence deserves more attention under changing climate and human activities.


Assuntos
Matéria Orgânica Dissolvida , Solo , Humanos , Solo/química , Áreas Alagadas , Lignina , Minerais/química , Ferro/análise , Água/análise , Fenóis/análise , Compostos Ferrosos , Carbono/química
4.
Heliyon ; 10(6): e28021, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524547

RESUMO

Vascular calcification (VC) is an accurate risk factor and predictor of adverse cardiovascular events; however, there is currently no effective therapy to specifically prevent VC progression. Capsaicin (Cap) is a bioactive alkaloid isolated from Capsicum annuum L., a traditional medicinal and edible plant that is beneficial for preventing cardiovascular diseases. However, the effect of Cap on VC remains unclear. This study aimed to explore the effects and related mechanisms of Cap on aortic calcification in a mouse and on Pi-induced calcification in vascular smooth muscle cells (VSMCs). First, we established a calcification mouse model with vitamin D3 and evaluated the effects of Cap on calcification mice using von Kossa staining, calcium content, and alkaline phosphatase activity tests. The results showed that Cap significantly improved calcification in mice. VSMCs were then cultured in 2.6 mM Na2HPO4 and 50 µg/mL ascorbic acid for 7 days to obtain a calcification model, and we investigated the effects and mechanisms of Cap on VSMCs calcification by assessing the changes of calcium deposition, calcium content, and subsequent VC biomarkers. These results showed that Cap alleviated VSMCs calcification by upregulating the expressions of TRPV1. Moreover, Cap reduced the expression of Wnt3a and ß-catenin, whereas DKK1 antagonised the inhibitory effect of Cap on VSMC calcification. This study is the first to offer direct evidence that Cap inhibits the Wnt/ß-catenin signaling pathway by upregulating the expression of the TRPV1 receptor, resulting in the decreased expression of Runx2 and BMP-2, thereby reducing VSMC calcification. Our study may provide novel strategies for preventing the progression of VC. This could serve as a theoretical basis for clinically treating VC with spicy foods.

5.
Nat Commun ; 15(1): 2560, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519493

RESUMO

The development of high-performance lead-free K0.5Na0.5NbO3-based piezoceramics for replacing commercial lead-containing counterparts is crucial for achieving environmentally sustainable society. Although the proposed new phase boundaries (NPB) can effectively improve the piezoelectricity of KNN-based ceramics, the difficulty of achieving saturated poling and the underlying multiscale structures resolution of their complex microstructures are urgent issues. Here, we employ a medium entropy strategy to design NPB and utilize texture engineering to induce crystal orientation. The developed K0.5Na0.5NbO3-based ceramics enjoys both prominent piezoelectric performance and satisfactory Curie temperature, thus exhibiting an ultrahigh energy harvesting performance as well as excellent transducer performance, which is highly competitive in both lead-free and lead-based piezoceramics. Comprehensive structural analysis have ascertained that the field-induced efficient multiscale polarization configurations irreversible transitions greatly encourages high saturated poling. This study demonstrates a strategy for designing high-performance piezoceramics and establishes a close correlation between the piezoelectricty and the underlying multiscale structures.

6.
Water Res ; 251: 121167, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301404

RESUMO

Microplastic contamination has become increasingly aggravated in coastal environments, further affecting biogeochemical processes involved with microbial community shifts. As a key biogeochemical process mainly driven by microbiota in coastal wetland sediments, litter decomposition contributes greatly to the global greenhouse gas (GHG) budget. However, under microplastic pollution, the relationship between microbial alterations and GHG emissions during litter decomposition in coastal wetlands remains largely unknown. Here, we explored the microbial mechanism by which polyethylene microplastic (PE-MP) influenced greenhouse gas (i.e., CH4, CO2 and N2O) emissions during litter decomposition in coastal sediments through a 75-day microcosm experiment. During litter decomposition, PE-MP exposure significantly decreased cumulative CH4 and CO2 emissions by 41.07% and 25.79%, respectively. However, there was no significant change in cumulative N2O emissions under PE-MP exposure. The bacterial, archaeal, and fungal communities in sediments exhibited varied responses to PE-MP exposure over time, as reflected by the altered structure and changed functional groups of the microbiota. The altered microbial functional groups ascribed to PE-MP exposure and sediment property changes might contribute to suppressing CH4 and CO2 emissions during litter decomposition. This study yielded valuable information regarding the effects of PE-MP on GHG emissions during litter decomposition in coastal wetland sediments.


Assuntos
Gases de Efeito Estufa , Áreas Alagadas , Gases de Efeito Estufa/análise , Microplásticos , Plásticos , Polietileno , Dióxido de Carbono , Metano/análise , Óxido Nitroso/análise , Solo
7.
Mol Biol Rep ; 51(1): 320, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393618

RESUMO

BACKGROUND: The aim of this study was to investigate whether ischemia/hypoxia conditions induce fatty acid transport from neurons to astrocytes and whether this mechanism is affected by ApoE isoforms. METHODS AND RESULTS: A neonatal rat model of hypoxic-ischemic brain damage was established. Excessive accumulation of lipid droplets and upregulation of ApoE expression occurred in the hippocampus and cerebral cortex after hypoxia-ischemia, which implied the occurrence of abnormal fatty acid metabolism. Lipid peroxidation was induced in an oxygen-glucose deprivation and reperfusion (OGDR) model of ApoE-/- primary neurons. The number of BODIPY 558/568 C12-positive particles (fatty acid markers) transferred from neurons to astrocytes was significantly increased with the addition of human recombinant ApoE compared with that in the OGDR group, which significantly increased the efficiency of fatty acid transport from neurons to astrocytes and neuronal viability. However, ApoE4 was found to be associated with lower efficiency in fatty acid transport and less protective effects in OGDR-induced neuronal cell death than both ApoE2 and ApoE3. COG133, an ApoE-mimetic peptide, partially compensated for the adverse effects of ApoE4. FABP5 and SOD1 gene and protein expression levels were upregulated in astrocytes treated with BODIPY 558/568 C12 particles. CONCLUSIONS: In conclusion, ApoE plays an important role in mediating the transport of fatty acids from neurons to astrocytes under ischemia/hypoxia conditions, and this transport mechanism is ApoE isoform dependent. ApoE4 has a low transfer efficiency and may be a potential target for the clinical treatment of neonatal hypoxic-ischemic encephalopathy.


Assuntos
Apolipoproteína E4 , Astrócitos , Compostos de Boro , Animais , Humanos , Ratos , Apolipoproteína E4/genética , Astrócitos/metabolismo , Proteínas de Ligação a Ácido Graxo , Ácidos Graxos/metabolismo , Hipóxia/metabolismo , Isquemia , Neurônios/metabolismo
8.
iScience ; 27(2): 108912, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38323006

RESUMO

Human umbilical cord mesenchymal stem cells (UC-MSCs)-derived hepatocyte-like cells (HLCs) have shown great promise in the treatment of liver diseases. However, most current induction protocols yield hepatocyte-like cells with limited function as compared with primary hepatocytes. Schisandrin B (Sch B) is one of the main components of Schisandra chinensis, which can prevent fibrosis progression and promote liver cell regeneration. Herein, we investigated the effects of Sch B on hepatic differentiation of UC-MSCs. We found that treatment with 10 µM Sch B from the second stage of the differentiation process increased hepatic marker levels and hepatic function. Additionally, RNA-seq analysis revealed that Sch B promoted hepatic differentiation via activating the JAK2/STAT3 pathway. When transplanted HLCs into mice with CCL4-induced liver fibrosis, Sch B-treated HLCs exhibited significant therapeutic effects. This study provides an optimized hepatic differentiation protocol for UC-MSCs based on Sch B, yielding functioning cells for liver disease treatment.

9.
Oncogene ; 43(12): 866-883, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38297082

RESUMO

Metastasis is an important factor that causes ovarian cancer (OC) to become the most lethal malignancy of the female reproductive system, but its molecular mechanism is not fully understood. In this study, through bioinformatics analysis, as well as analysis of tissue samples and clinicopathological characteristics and prognosis of patients in our centre, it was found that Forkhead box Q1 (FOXQ1) was correlated with metastasis and prognosis of OC. Through cell function experiments and animal experiments, the results show that FOXQ1 can promote the progression of ovarian cancer in vivo and in vitro. Through RNA-seq, chromatin immunoprecipitation sequencing (ChIP-seq), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis (GSEA), Western blotting (WB), quantitative real-time polymerase chain reaction (qRT‒PCR), immunohistochemistry (IHC), luciferase assay, and ChIP-PCR, it was demonstrated that FOXQ1 can mediate the WNT/ß-catenin pathway by targeting the LAMB promoter region. Through coimmunoprecipitation (Co-IP), mass spectrometry (MS), ubiquitination experiments, and immunofluorescence (IF), the results showed that PARP1 could stabilise FOXQ1 expression via the E3 ubiquitin ligase Hsc70-interacting protein (CHIP). Finally, the whole mechanism pathway was verified by animal drug combination experiments and clinical specimen prognosis analysis. In summary, our results suggest that PARP1 can promote ovarian cancer progression through the LAMB3/WNT/ß-catenin pathway by stabilising FOXQ1 expression.


Assuntos
Neoplasias Ovarianas , beta Catenina , Animais , Humanos , Feminino , beta Catenina/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Via de Sinalização Wnt/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Poli(ADP-Ribose) Polimerase-1/genética
10.
Acta Neurochir (Wien) ; 166(1): 35, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270682

RESUMO

BACKGROUND: Presently, a consistent strategy for determining the stability of unruptured intracranial aneurysms (UIAs) in elderly patients is lacking, primarily due to the unique characteristics of this demographic. Our objective was to assess the risk factors contributing to aneurysm instability (growth or rupture) within the elderly population. METHODS: In this study, we compiled data from follow-up patients with UIAs spanning from November 2016 to August 2021. We specifically focused on patients aged ≥ 60 years. Clinical histories were gathered, and morphological parameters of aneurysms were measured. The growth of aneurysms was determined using the computer-assisted semi-automated measurement (CASAM). Growth and rupture rates of UIAs were calculated, and both univariate and multivariate Cox regression analyses were conducted. Additionally, Kaplan-Meier survival curves were plotted. RESULTS: A total of 184 patients with 210 aneurysms were enrolled in the study. The follow-up period encompasses 506.6 aneurysm-years and 401.4 patient-years. Among all the aneurysms, 23 aneurysms exhibited growth, with an annual aneurysm growth rate of 11.0%, and 1 (4.5%) experienced rupture, resulting in an annual aneurysm rupture rate of 0.21%. Multivariate Cox analysis identified poorly controlled hypertension (P = 0.011) and high-risk aneurysms (including anterior cerebral artery (ACA), anterior communicating artery (AcoA), posterior communicating artery aneurysm (PcoA), posterior circulation (PC) > 4 mm or distal internal carotid artery (ICAd), middle cerebral artery (MCA), and PC > 7 mm) (P = 0.006) as independent risk factors for the development of unstable aneurysms. CONCLUSIONS: In the elderly, poorly controlled hypertension and high-risk aneurysms emerge as significant risk factors for aneurysm instability. This underscores the importance of rigorous surveillance or timely intervention in patients presenting with these risk factors.


Assuntos
Aneurisma Roto , Hipertensão , Aneurisma Intracraniano , Humanos , Idoso , Adulto , Criança , Aneurisma Intracraniano/epidemiologia , Fatores de Risco , Aneurisma Roto/epidemiologia , Artéria Cerebral Anterior
11.
Small ; : e2309992, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169093

RESUMO

Transparent dielectric ceramics are splendid candidates for transparent pulse capacitors (TPCs) due to splendid cycle stability and large power density. However, the performance and service life of TPCs at present are threatened by overheating damage caused by dielectric loss. Here, a cooperative optimization strategy of microstructure control and superparaelectric regional regulation is proposed to simultaneously achieve excellent energy storage performance and real-time temperature monitoring function in NaNbO3 -based ceramics. By introducing aliovalent ions and oxides with large bandgap energy, the size of polar nanoregions is continuously reduced. Due to the combined effect of increased relaxor behavior and fine grains, excellent comprehensive performances are obtained through doping appropriate amounts of Bi, Yb, Tm, and Zr, Ta, Hf in A- and B-sites of the NaNbO3 matrix, including recoverable energy storage density (5.39 J cm-3 ), extremely high energy storage efficiency (91.97%), ultra-fast discharge time (29 ns), and superior optical transmittance (≈47.5% at 736 nm). Additionally, the phenomenon of abnormal fluorescent negative thermal expansion is realized due to activation mechanism of surface phonon at high temperatures that can promote the formation of [Yb···O]-Tm3+ pairs, showing great potential in real-time temperature monitoring of TPCs. This research provides ideas for developing electronic devices with multiple functionalities.

12.
Interv Neuroradiol ; : 15910199231219212, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38192110

RESUMO

BACKGROUND: Although stent-assisted coiling embolization (SAC) has been associated with a higher risk of ischemic and hemorrhagic complications, the use of SAC continues to rise for treating ruptured intracranial aneurysms (RIAs). This study aims to assess the safety and effectiveness of dual antiplatelet therapy (DAPT) in the context of RIAs. METHODS: We conducted a retrospective analysis at a single center, involving patients with aneurysmal subarachnoid hemorrhage (aSAH) between May 1, 2017 and December 31, 2021. Patients were categorized into two groups: the SAC group and the non-SAC (NSC) group. Patients in the SAC group received DAPT. We compared modified Rankin Scale (mRS) score, along with hemorrhagic and ischemic complications, between the two groups to evaluate the safety and efficacy of DAPT for SAC. RESULTS: The study included a total of 541 patients, of whom 38 (7.0%) experienced hemorrhagic complications and 48 (8.9%) developed ischemic complications. Additionally, 99 (18.3%) and 84 (15.5%) had poor clinical outcomes at discharge and 6 months, respectively. However, no statistically significant differences were observed between the two groups. Our analysis revealed that aneurysm location in the posterior circulation was a significant risk factor for an unfavorable prognosis when antiplatelet drugs were used following SAC (p = 0.025). CONCLUSIONS: Administering antiplatelet drugs after SAC for RIAs has demonstrated both safety and effectiveness. However, caution should be exercised when considering this treatment strategy for RIAs located in the posterior circulation due to the potentially elevated risk.

13.
Chem Sci ; 15(3): 1051-1060, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38239688

RESUMO

Organic small-molecule compounds have become promising cathode materials for high-performance lithium-ion batteries (LIBs) due to their high theoretical capacity, efficient utilization of active sites, low cost, and sustainability. However, severe dissolution and poor electronic conductivity limit their further practical applications. Herein, we have synthesized an insoluble organic small molecule, ferrocenyl-3-(λ1-azazyl) pyrazinyl [2,3-f] [1,10] phenanthrolino-2-amine (FCPD), by grafting ferrocene onto pyrazino[2,3-f] [1,10] phenanthroline-2,3-diamine (PPD). The combination of ferrocene (p-type Fe2+ moiety) and PPD (n-type C[double bond, length as m-dash]N groups) in a bipolar manner endows the target FCPD cathode with an increased theoretical capacity and a wide voltage window. The highly conjugated π-π aromatic skeleton inside enhances FCPD's electron delocalization and promotes strong interaction between FCPD units. Additionally, the mesoporous structure within the FCPD can provide numerous electroactive sites, contact area, and ion diffusion channels. Benefiting from the bipolar feature, aromatic, and mesoporous structure, the FCPD cathode demonstrates a large capacity of 250 mA h g-1 at 0.1 A g-1, a long lifespan of 1000 cycles and a high-rate capability of 151 mA h g-1 at 5 A g-1 along with a wide voltage window (1.2-3.8 V). Additionally, in situ synchrotron FT-IR and ex situ XPS reveal its dual ion storage mechanism in depth. Our findings provide essential insights into exploring the molecular design of advanced organic small molecules.

14.
J Immunother Cancer ; 11(12)2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38056895

RESUMO

BACKGROUND: Cancer immunotherapies can induce durable tumor regression, but most patients do not respond. SETD2 mutation has been linked to the efficacy of immune checkpoint inhibitors (ICIs) immunotherapy. The functional importance of the SETD2 inactivation and how to modulate immunotherapy response remains unclear. METHODS: To explore the function of SETD2 in immunotherapy, knockout and subsequent functional experiments were conducted. Bulk RNA-seq, ATAC-seq, Chip-seq and single-cell RNA-seq were performed to dissect the mechanism and explore the immune microenvironment of mouse tumor. Flow cytometry was used to assess cell surface antigen and intratumoral T cell levels. RESULTS: We comprehensively determine the effect of SETD2 inactivation in ICIs therapy and elucidate the mechanistic impact on tumor immunity. Murine syngeneic tumors harboring Setd2 inactivation are sensitive to ICIs. By bulk and single-cell RNA-seq, we further reveal that SETD2 inactivation reprograms intratumoral immune cells and inflames the tumor microenvironment, which is characterized by high infiltration of T cells and enhanced antigen presentation to activate CD8+ T cell-mediated killing. Mechanistically, via an integrated multiomics analysis using ATAC-seq, ChIP-seq and RNA-seq, we demonstrate that SETD2 inactivation reduces NR2F1 transcription by impairing H3K36me3 deposition and chromatin accessibility, which activates the STAT1 signaling pathway to promote chemokines and programmed cell death protein-1 (PD-1) expression and enhance antigen presentation. All these regulatory mechanisms synergistically promote the effects of anti-programmed cell death ligand 1 immunotherapy in Setd2-knockout syngeneic mouse models. The SETD2-NR2F1-STAT1 regulatory axis is conserved in human and murine cancers. Finally, cancer patients harboring SETD2 mutations who received ICIs show increased durable clinical benefits and survival. CONCLUSIONS: These findings provide novel insights into the biology of SETD2 inactivation regulation and reveal a new potential therapeutic biomarker for ICIs immunotherapy in various refractory cancers.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Animais , Camundongos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Linfócitos T CD8-Positivos , Biomarcadores , Imunoterapia , Microambiente Tumoral , Fator I de Transcrição COUP/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo
15.
Acad Radiol ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38142176

RESUMO

BACKGROUND: Predicting breast cancer molecular subtypes can help guide individualised clinical treatment of patients who need the rational preoperative treatment. This study aimed to investigate the efficacy of preoperative prediction of breast cancer molecular subtypes by contrast-enhanced mammography (CEM) radiomic features. METHODS: This retrospective two-centre study included women with breast cancer who underwent CEM preoperatively between August 2016 and May 2022. We included 356 patients with 386 lesions, which were grouped into training (n = 162), internal test (n = 160) and external test sets (n = 64). Radiomics features were extracted from low-energy (LE) images and recombined (RC) images and selected. Three dichotomous tasks were established according to postoperative immunohistochemical results: Luminal vs. non-Luminal, human epidermal growth factor receptor (HER2)-enriched vs. non-HER2-enriched, and triple-negative breast cancer (TNBC) vs. non-TNBC. For each dichotomous task, the LE, RC, and LE+RC radiomics models were built by the support vector machine classifier. The prediction performance of the models was assessed by the area under the receiver operating characteristic curve (AUC). Then, the accuracy, sensitivity, specificity, positive predictive value, and negative predictive value were calculated for the models. DeLong's test was utilised to compare the AUCs. RESULTS: Radiomics models based on CEM are valuable for predicting breast cancer molecular subtypes. The LE+RC model achieved the best performance in the test set. The LE+RC model predicted Luminal, HER2-enriched, and TNBC subtypes with AUCs of 0.93, 0.89, and 0.87 in the internal test set and 0.82, 0.83, and 0.69 in the external test set, respectively. In addition, the LE model performed more satisfactorily than the RC model. CONCLUSION: CEM radiomics features can effectively predict breast cancer molecular subtypes preoperatively, and the LE+RC model has the best predictive performance.

16.
Environ Sci Pollut Res Int ; 30(59): 123351-123367, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37981610

RESUMO

Urban rainstorm and waterlogging occurred more frequently in recent years, causing huge economic losses and serious social harms. Accurate rainstorm and waterlogging simulation is of significant value for disaster prevention and mitigation. This paper proposed a numerical model for urban rainstorm and waterlogging based on the Storm Water Management Model (SWMM) and Geographic Information System (GIS), and the model was applied in Lianhu district of Xi'an city of China. Furthermore, the effects of rainfall characteristics, pipe network implementation level and urbanization level on waterlogging were explored from the perspectives of spatial distribution of waterlogging points, drainage capacity of pipe network and surface runoff generation and confluence. The results show that: (1) with the increase of rainfall recurrence period, the peak of total water accumulating volume, the average decline rate of water accumulating volume and the number of waterlogging nodes increase; (2) optimizing the pipe diameter can shorten the average overload time of the pipe network from the entire pipe network, but for a single pipe, optimizing the pipe diameter may lead to overloading of unoptimized downstream pipeline; (3) the lower the imperviousness, the less the number of waterlogging nodes and average time of water accumulating, and (4) the west, northwest and southwest areas are relatively affected by the imperviousness, only improving the underlying surface conditions has limited influence on waterlogging in the study area. This study can provide reference for urban waterlogging prevention and reduction and pipe network reconstruction.


Assuntos
Chuva , Água , Cidades , Urbanização , Simulação por Computador , China , Movimentos da Água
17.
BMC Plant Biol ; 23(1): 571, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978426

RESUMO

BACKGROUND: Astragalus grows mainly in drought areas. Cycloastragenol (CAG) is a tetracyclic triterpenoid allelochemical extracted from traditional Chinese medicine Astragalus root. Phospholipase C (PLC) and Gα-submit of the heterotrimeric G-protein (GPA1) are involved in many biotic or abiotic stresses. Nitric oxide (NO) is a crucial gas signal molecule in plants. RESULTS: In this study, using the seedlings of Arabidopsis thaliana (A. thaliana), the results showed that low concentrations of CAG induced stomatal closure, and high concentrations inhibited stomatal closure. 30 µmol·L-1 CAG significantly increased the relative expression levels of PLC1 and GPA1 and the activities of PLC and GTP hydrolysis. The stomatal aperture of plc1, gpa1, and plc1/gpa1 was higher than that of WT under CAG treatment. CAG increased the fluorescence intensity of NO in guard cells. Exogenous application of c-PTIO to WT significantly induced stomatal aperture under CAG treatment. CAG significantly increased the relative expression levels of NIA1 and NOA1. Mutants of noa1, nia1, and nia2 showed that NO production was mainly from NOA1 and NIA1 by CAG treatment. The fluorescence intensity of NO in guard cells of plc1, gpa1, and plc1/gpa1 was lower than WT, indicating that PLC1 and GPA1 were involved in the NO production in guard cells. There was no significant difference in the gene expression of PLC1 in WT, nia1, and noa1 under CAG treatment. The gene expression levels of NIA1 and NOA1 in plc1, gpa1, and plc1/gpa1 were significantly lower than WT, indicating that PLC1 and GPA1 were positively regulating NO production by regulating the expression of NIA1 and NOA1 under CAG treatment. CONCLUSIONS: These results suggested that the NO accumulation was essential to induce stomatal closure under CAG treatment, and GPA1 and PLC1 acted upstream of NO.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais , Estômatos de Plantas/fisiologia , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo
18.
Angew Chem Int Ed Engl ; 62(48): e202313770, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37819256

RESUMO

Herein, we report an unprecedented copper-catalyzed highly enantio- and diastereoselective radical oxyboration of ß-substituted styrenes. The lynchpin of success is ascribed to the development of a late-stage stereomutation strategy, which enables enantioenriched cis-isomers among a couple of early-generated diastereomers to be converted into trans-isomer counterparts, thus fulfilling high diastereocontrol; while the degree of enantio-differentiation is determined by the borocupration process of the C=C bond. This reaction provides an efficient protocol to access enantioenriched trans-1,2- dioxygenation products. The value of this method has further been highlighted in a diversity of follow-up stereospecific transformations and further modifying complex molecules.

19.
Bioresour Technol ; 390: 129852, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839649

RESUMO

Chinese distillers' grains (CDGs) have low fermentation efficiency due to the presence of lignocellulosic components, such as rice husk. In this study, a microbial consortium synthesized was used based on the "functional complementarity" principle to produce lignocellulolytic crude enzyme. The crude enzyme was used to hydrolyze CDGs. After enzymatic hydrolysis, lignocellulose was damaged to varying degrees and the crystallinity decreased. Subsequently, the feed protein was produced using yeast through two pathways. The results showed that the crude enzyme produced by the microbial consortium (comprising Trichoderma reesei, Aspergillus niger, and Penicillium) exhibited excellent enzymatic efficiency, yielding 27.88%, 19.64%, and 10.88% of reducing sugar, cellulose, and hemicellulose. The true protein content of CDGs increased by 53.49% and 48.35% through the first and second pathways, respectively. Notably, the second pathway demonstrated higher economic benefits to produce feed protein. This study provides a pathway for high-quality utilization of CDGs.


Assuntos
Celulose , Consórcios Microbianos , Carboidratos , Saccharomyces cerevisiae , Fermentação , Hidrólise
20.
J Tissue Eng ; 14: 20417314231200328, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37736245

RESUMO

Acute liver failure (ALF) is characterized by rapid liver cell destruction. It is a multi-etiological and fulminant complication with a clinical mortality of over 80%. Therapy using mesenchymal stem cells (MSCs) or MSCs-derived exosomes can alleviate acute liver injury, which has been demonstrated in animal experiments and clinical application. However, similar to other stem cells, different cell sources, poor stability, cell senescence and other factors limit the clinical application of MSCs. To achieve mass production and quality control on stem cells and their exosomes, transfecting umbilical cord mesenchymal stem cell (UCMSC) with lentivirus overexpressing human telomerase reverse transcriptase (hTERT) gene, the hTERT-UCMSC was constructed as an immortalized MSC cell line. Compared with the primary UCMSC (P3) and immortalized cell line hTERT-UCMSC at early passage (P10), the hTERT-UCMSC retained the key morphological and physiological characteristics of UCMSC at the 35th passage (P35), and showed no signs of carcinogenicity and toxic effect in mice. There was no difference in either exosome production or characteristics of exosomes among cultures from P3 primary cells, P10 and P35 immortalized hTERT-UCMSCs. Inoculation of either hTERT-UCMSC (P35) or its exosomes improved the survival rate and liver function of ALF mice induced by thioacetamide (TAA). Our findings suggest that this immortalized cell line can maintain its characteristics in long-term culture. Inoculation of hTERT-UCMSC and its exosomes could potentially be used in clinics for the treatment of liver failure in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...